1. The table shown below lists, for selected years between 1975 and 1990, the percent of persons 25 years and over who have completed four or more years of college.

<table>
<thead>
<tr>
<th>Year</th>
<th>1975</th>
<th>1980</th>
<th>1985</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>13.9</td>
<td>16.2</td>
<td>19.4</td>
<td>21.3</td>
</tr>
</tbody>
</table>

a. Do not align the input data. Use your calculator to find the best-fitting linear model for the data given in the table. Define the model completely. Paste this model into Y1.

\[f(x) = 0.508x - 98.9 \] 4.1 percent of persons over 25 who have completed 4 or more years of college, where \(x \) is the year, 1975 \(\leq x \leq 1990 \)

b. What is the slope of your linear model? (Include units.)

\[0.508 \text{ percentage points (or \%)} \text{ per year} \]

c. Find the first differences in the output data.

\[
\begin{array}{cccc}
13.9 & 16.2 & 19.4 & 21.3 \\
2.3 & 3.2 & 1.9 & \\
\end{array}
\]

d. Why are the first differences so different from the slope of the line?

The input data are 5 years apart so the first diff. are about 5 * slope

2. Align the input data to 1900.

a. Find the best-fitting linear model for the aligned data. Define the model completely. Paste this model into Y2.

\[f(x) = 0.508x - 24.2 \] 21 percent of persons over 25 who have completed 4 or more years of college, where \(x \) is the yrs. since 1900, 75 \(\leq x \leq 90 \)

b. What is the slope of the line you gave in part #2? (Include units.)

\[0.508 \text{ percentage points (\%)} \text{ per year} \]

1 Source: U.S. Bureau of the Census.

August, 2004
3. Align the input data to 1970.
 a. Find the best-fitting linear model for the aligned data. Define the model completely. Paste this model into Y3.

 \[P(x) = 0.508x + 11.35 \text{ percent of persons over 25 who have completed 4 or more years of college, where } x \text{ is the # of years since 1970, } 5 \leq x \leq 20 \]

 b. What is the slope of the line you gave in part #3? (Include units.)

 \[0.508 \text{ percentage points (90) year} \]

4. Align the input data to 1975.
 a. Find the best-fitting linear model for the aligned data. Define the model completely. Paste this model into Y4.

 \[P(x) = 0.508x + 13.89 \text{ percent of persons over 25 who have completed 4 or more years of college, where } x \text{ is the # of years since 1975, } 0 \leq x \leq 15 \]

 b. What is the slope of the line you gave in part #4? (Include units.)

 \[0.508 \text{ percentage points (90) year} \]

5. All four models have the same slope.

 Each of the models has a different value for the \(b \) (or \(c \)) term. This term gives the location of the \(y \) intercept.

6. Use each of the models to evaluate the % of people over 25 with 4 years college in 1970 and 1995.

<table>
<thead>
<tr>
<th>Year</th>
<th>Model in Y1</th>
<th>Model in Y2</th>
<th>Model in Y3</th>
<th>Model in Y4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>(x = 1970)</td>
<td>(x = 70)</td>
<td>(x = 0)</td>
<td>(x = -5)</td>
</tr>
<tr>
<td>Output for 1970</td>
<td>11.35</td>
<td>11.35</td>
<td>11.35</td>
<td>11.35</td>
</tr>
<tr>
<td>1995</td>
<td>(x = 1995)</td>
<td>(x = 95)</td>
<td>(x = 25)</td>
<td>(x = 20)</td>
</tr>
<tr>
<td>Output for 1995</td>
<td>24.05</td>
<td>24.05</td>
<td>24.05</td>
<td>24.05</td>
</tr>
</tbody>
</table>

August, 2004
What conclusion can you make about using differently aligned models for output calculations?

- no difference in results

7. The following table gives a company’s profit (in thousand dollars) from 1995 to 1999.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit (thousand $)</td>
<td>51</td>
<td>60.5</td>
<td>69</td>
<td>79</td>
<td>91</td>
</tr>
</tbody>
</table>

a. Put the first differences in the boxes below the table. The first differences ___________ (do do not) indicate that a linear model is appropriate.

b. Align the data as years since 1990. Fit a linear model to the data. Define the model completely (give answers correct to 3 decimal places).

\[P(x) = 9.85x + 1.15 \text{ thou$} \] profit for company

where \(x \) is \# of years since 1990, \(5 \leq x \leq 9 \)

\[y(14) \]

\$ 139.05 thou$.

d. The prediction process used in part c is ___________ (extrapolation/interpolation) because 14 is outside data set used to find model

e. When was the company’s profit $28,000? Ignore the context and give your answer to three decimal places: \(2.726 \)

\[y(28) = 28 \rightarrow x = 2.726 \]

f. Give your answer to part e correct to the nearest year: 1993.

\(y(1993) \)

\(1992 \)

g. In which year did the company break even? Ignore the context and give your answer to three decimal places: \(-1.117 \)

\[y(0) = 0 \rightarrow x = -1.117 \]

h. Give your answer to part g correct to the nearest year: 1989.

August, 2004

-2 -1 0

8. The US population numbers for selected years from 1900 to 1980 are given in the table below.

<table>
<thead>
<tr>
<th>Year</th>
<th>1900</th>
<th>1920</th>
<th>1940</th>
<th>1960</th>
<th>1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (in millions)</td>
<td>76.1</td>
<td>106.5</td>
<td>132.6</td>
<td>180.7</td>
<td>226.5</td>
</tr>
<tr>
<td>30.4</td>
<td>26.1</td>
<td>48.1</td>
<td>45.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Put the first differences in the boxes below the table.

b. Align your data to years after 1900. Fit a linear model to the data. Define the model completely (give answers correct to 3 decimal places).

\[P(x) = 1.875x + 69.48 \text{ mill people where } x \text{ is the # years since 1900, } 0 \leq x \leq 80 \]

c. Use the model to find the population in 1970. 200.73 mill

d. The prediction process used in part c is interpolation (extrapolation/interpolation) because 70 is within the data set.

e. According to the model, when will the population reach 315,000,000? Ignore the context and give your answer to three decimal places: 130.944 0 = 130.944 - 315

f. Give your answer to part e correct to the nearest year: 2031.

9. The revenue for International Game Technology was $824.1 million in 1995 and $743.9 million in 1998. Assume that the revenue continued to decrease at a constant rate through 2002.

Find the rate of change of revenue. Give units with your answer.

\[(1995, 824.1) \quad \rightarrow \quad \text{Fit linear model} \quad a = -26.733 \text{ mill} \quad \text{yr.} \]

10. The total number of Chapter 13 bankruptcy filings between 1994 and 1997 can be modeled by \(B(t) = 48.6t + 240 \) thousand filings \(t \) years after 1994. Find and interpret the slope in the context of the problem.

Between 1994 and 1997, Ch. 13 bankruptcy filings increased (on average) by 48,000 each year.

August, 2004