As Clemson would change from an all-male military school to a large, all-purpose school, a lone cadet views the old Main (Tillman Hall) Building. Clemson University Photographs, CUL.SC.
The Board of Trustees continued to experience change, although it would not be “wholesale” after 1950. The first alteration, however, surprised everyone. Board President Christie Benet, who had served as president only since 1949, died unexpectedly on March 30, 1951. A life member since 1929, he had proved a wise and stabilizing counsel across the Depression and World War II, and his two short presidential years had major importance for the college’s future.

First, Benet long recognized the importance of Robert M. Cooper to South Carolina and to Clemson. Cooper, a farmer, had served as president of the S.C. Livestock Association, the State Dairyman’s Association, and the S.C. State Fair Association. Then he became general manager of the S.C. Public Service Authority, which the general assembly had created in 1934 primarily to bring modern electric power to much of the state. After five years of delay, construction had begun on the massive dam and lock project at Pinopolis, and when completed it became the source of power for Charleston’s wartime industries. He also chaired an informal board on planning, research, and development that would become the S.C. Development Board (1954). A confidant of most of the governors during the 1940s, 1950s, and until his death in the mid-1960s, Cooper, with Edgar A. Brown, counted as one of Clemson’s major advocates to the state government. Thus, it was no surprise when the other eleven trustees unanimously elected Cooper as president of the board.

Second, with Cooper and Brown, Benet had recognized the value of Charles Daniel to Clemson and to all of South Carolina. Those three had used their influence with the other three life trustees to secure Daniel’s election to the life seat left vacant by J. E. Sirrine.

Benet’s third legacy was to keep the “public face” of the board united, a style that lasted until the mid-1980s. But some among the trustees and influential alumni seemed restless and worried that President Poole had neither the forcefulness nor vision to make Clemson a major contributor to South Carolina’s newly emerging economy. Benet never expressed his own views on Poole but differed with him, as did some other trustees, on architectural developments in campus buildings. There were also differences, some expressed in writing, over the op-
opportunities for women to become a permanent part of the teaching and learning enterprises at Clemson. The last point of difficulty with a few trustees and a small cluster of alumni involved the role that military discipline should play on the campus. Each of the above issues carried with it the weight of a half-century of tradition. The easiest burden to lift was that of architecture. And cost spoke so persuasively that the decision would come surprisingly quickly.

Peabody Report

In some ways, the most complex of the decisions involved a combination of academic issues. In 1945, the Peabody Foundation completed and published a study of “consolidation and coordination” in colleges and universities around the nation as the multiple layers of America’s governments, along with foundations
and associations, jostled to help redirect American life after nearly three decades of hand-to-mouth “emergency life” survival (World War I, the drought, the Depression, and World War II). The Peabody report noted the unusual structure of Clemson’s governing board. The report also cited Clemson’s three separate sets of charters, which made the college nearly unique. To the report’s authors, Mr. Clemson’s will was paramount, with its board composed of a majority of self-perpetuating and a minority of legislatively selected trustees. A number of court decisions and several rulings of the S.C. attorneys general had confirmed and reconfirmed that the Act of Acceptance (1889) created a charitable trust that made the state’s continued possession of Mr. Clemson’s bequest dependent on full acceptance of the terms of the will.

The second set of charters was a series of S.C. statutes that claimed a growing collection of federal laws for the people of South Carolina that were applicable to one or more designated or created institutions. The best known, the Morrill Land Grant Act of 1862, assigned the federally supported teaching of agriculture, mechanics, and military strategy to each state’s designated school. The S.C. General Assembly had moved and divided that designation several times, but not since November 27, 1889. The U.S. Hatch Act of 1887 assigned continued federal funding and research authority to whichever institution(s) had been the designated “1862” land-grant institutions. The S.C. General Assembly, understanding that term, had closed and sold properties designated for this purpose and transferred the revenue to the Clemson board following the Act of Acceptance. The third federal law, not nearly so often cited, was the Morrill Second Land Grant Act of 1890, which allowed (but did not require) states to accept African American students at existing land-grant schools or to establish specific land-grant colleges for the teaching of African Americans and to fund the teaching mission of previously designated institutions more thoroughly. Because the S.C. state government had done that much earlier, its institutions simply gained increased endowment. It is important to note that the 1890 law did not speak to any mission except teaching. The fourth law, the Smith-Lever Act of 1914, created the Cooperative Extension Service and assigned it to the land-grant college, which the S.C. General Assembly again awarded to Clemson. Given the collection of experts in material and academic subjects at land-grant schools, it was no wonder that as the federal and state governments expanded their roles in internal safety and defense, the various governments frequently attached regulatory responsibilities to land-grant institutions. For Clemson, this meant that at varying times the trustees and officers of the institution have had responsibility for fertilizer inspection and analysis, crop and pest management, livestock quarantines and sanitation, and many other similar obligations. In addition, the Peabody report, funded by the Rockefeller Foundation, noted the expensive (to the state) tripling of engineering at Clemson, USC, and the Citadel. It wondered
whether or not the state could afford it. Commenting on the report, the Rock-
eefeller consultant expressed surprise to “learn that USC also offers engineering
with four options.” The Peabody report concluded that the Clemson board had
consistently acted and operated for the public good.3

Textiles

The public good, of course, changed with the times, and the needs in 1945
were as great as they ever had been. The board had already proved its foresight
when it created the textile program in 1898. It was the first collegiate textile
program in the South. For nearly fifty years, the program provided the engi-
neers who improved the old and developed the new textile machinery, just as
the agricultural scientists improved the fibers and worked on fertilizers, irriga-
tion, and field machinery. The heavy
exposure to basic studies in gram-
mar and mathematics, along with
history and literature, sent many a
textile graduate into the mill towns
of the South equipped to manage
and improve the mills and to teach
younger mill workers the three “r’s”
of reading, ’riting, and ’rithmetic.
Of course, the passage of the federal
Smith-Hughes Act of 1917 institu-
tionalized this concept in a variety of
vocational education programs that,
with the Clemson-managed youth
programs, played, and continue to
play, an important part in adjusting
the direction of South Carolina and
other parts of the country to meet
changing times. Generally, these
programs were housed in the land-
grant universities and colleges.

Clemson’s textile program was
led by Hugh M. Brown, a noted re-
search scientist who had earned ad-
vanced degrees from the University
of California (Berkeley) and who had
spent most of the war years on loan
to MIT working with a team of other
leading scientists in radiation research. The textile faculty of thirty-two were a mixture of practical and theoretical men, most of whom had been hired from industry and six of whom were working toward advanced degrees. Further, when industry progress seemed ahead of collegiate teaching and research, Brown sent faculty to major industries to catch up. When synthetic fibers appeared as a major upcoming trend, for example, Joseph Lindsay spent time in some of the foremost textile chemistry industries and laboratories, such as Tennessee Eastman in Kingsport, Tennessee.

Most of the textile and connected industries contributed to Clemson’s research program. The J. E. Sirrine Foundation, in one year alone (1947), funded nine major research projects at Clemson, while Charles E. Daniel in 1949 gave $100,000 personally to Clemson for textile research. Several other donors added $40,000, and the chair of the board of M. Lowenstein and Sons of New York gave another $25,000. By 1951, Poole reported to the S.C. Cotton Manufacturers Association that over the past few years, various friends donated another $250,000, of which most went for undergraduate education, while equipment manufacturers had discounted new equipment, saving Clemson an additional $150,000.

Students enrolled in textiles composed about 25 percent of the entire student body, and Clemson’s School of Textiles was the largest in the nation. In fact by 1954, 2,035 men had graduated from Clemson in one or another of the branches of textiles. The formal dedication of the textile building, named Sirrine Hall in memory of J. E. Sirrine, was accompanied with the awarding of honorary doctoral degrees and hoods to twenty-eight national textile, cotton, and industrial executives.

Engineering

Despite the size and growth of the textile program, engineering was 20 percent larger and enrolled about 34 percent of all the undergraduate students. But some of the faculty taught in surplus buildings moved from closings on shrinking military bases and that had limited useful service. The engineering program was still led by Samuel B. Earle, the director and then dean of engineering since 1910, except for the break in 1919 when he acted for the president while Riggs had gone to Europe on educational duty, and then from Riggs’s sudden death in January 1924 to the arrival of Sikes in 1925. Earle held a deep desire to help diversify the economy of South Carolina and the South. He could note with satisfaction that 44 percent of all Clemson’s engineering graduates worked in South Carolina and 77 percent in the South. Most of the graduates working beyond the region were in Earle’s and Riggs’s specialty in electrical engineering, where Clemson men had made significant contributions to hydroelectrical power and aeronautical sciences. In fact, Earle must have regretted that in the 1920s and 1930s the trustees had
ignored his and Prof. James Sams’s suggestions that Clemson institute a formal program in aeronautical engineering.9

But Earle was an imaginative leader, and as soon as the war ended, he and a small group of younger faculty and alumni created a program in ceramic engineering. South Carolina had a small ceramic industry that dated from the first European settlements and generally operated on techniques introduced from Europe and Africa. The most advanced work had been done in the mid-1700s when men from Great Britain’s Josiah Wedgwood firm had worked the kaolin veins in South Carolina for export to the British midlands. In addition to local brick manufacturing companies, a local art industry had developed in the Savannah River basin. Begun in the 1810s in the Edgefield district, the Edgefield pottery, or stoneware, was used for storage and was enhanced by the alkaline glaze that contained no lead and thus was not poisonous.10

The field of ceramic engineering was relatively new. Earle and his small group found a twenty-six-year-old graduate of North Carolina State College who had served in World War II to begin the program. Gilbert C. Robinson, born in 1920 in Lykens, Pennsylvania, had attended the Episcopal School of Alexandria, Virginia.11 Robinson joined the Clemson faculty in August 1946 and set out immediately with “Doc Rock” Calhoun to undertake a sweeping mapping of South Carolina’s mineral resources.12 Robinson also collected a small, energetic group of faculty. Together they analyzed the samples. “Gil” met with clay product executives and managed to upgrade and slowly and quietly change this cottage industry into a fast-growing and significant South Carolina industry.13

The program was strengthened through the friendship shown it by Frank J. Jervey and Charles Horn, president of the Olin Foundation. Horn enjoyed the companionship and sportsman’s interests of Poole and Earle and the industry and thoroughness of Robinson. Soon the Olin Foundation, with its strong interests in American mineral and ore deposits, began planning to fund for Clemson Agricultural College its own ceramic building with laboratories and a ceramic engineering library, including

Gilbert C. “Gil” Robinson (1919–1996) came to Clemson in 1946 to help create and chair the Department of Ceramic Engineering. Robinson, who also owned and operated a round kiln brick plant north of Gaffney with his wife, Barbara, retired in 1985. Clemson University Photographs, CUL.SC.
a set of the *Transactions of the British Ceramic Society*. The first graduates received their rings and diplomas in June 1950.

However, space remained a great problem in the School of Engineering. While a new ceramic engineering building, dedicated to the memory of F. E. Olin, provided a great addition to the overall mission of Clemson, it did not relieve the overcrowding in Riggs Hall and adjacent laboratories. Some programs were taught in the temporary buildings, others in temporary space in other buildings. The problems existed most acutely in chemical engineering, civil engineering, and architecture.

Architecture

In architecture, the problems were even more critical than elsewhere. The architectural professional accrediting board withheld accreditation from Clemson primarily because of the college's inadequate and scattered space for the program's 225 undergraduates. The minimum space the National Accrediting Board (NAB) required was 37,000 square feet, while Clemson could squeeze out only 11,500. As a result, Clemson graduates could practice their profession only in South Carolina, while no architecture schools existed at all in Tennessee and Mississippi for student alternatives. The S.C. Branch of the American Institute of Architects (AIA) and the State Board of Architecture urged Governor James Byrnes to support the inclusion of an architecture building in his recommendations to the legislature. Albert Simons, a prominent Charleston architect and onetime (1915–1916) Clemson faculty member, wrote Edgar A. Brown, chair of the Senate Finance Committee, also urging the legislature to finance the needed space. Also a letter from the S.C. Chapter of the AIA in 1948 strongly urged a separate School of Architecture be created in two years (1950). Poole took the letter to the Board of Trustees as information. The board disagreed, instructing him to have the program separate and functioning by 1949. He replied that he could not accomplish it so quickly. They then directed him to have it done by the end of the fiscal year 1950. It did not happen until 1955, which caused more irritation among some trustees.

Nonetheless, the students won regional and national honors. In 1949, Kirk Craig of Greenville finished second nationally in the competition for the Beaux Arts Institute of Design scholarship for international study. Three years later, another Greenvillian, Edward H. Shirley, won first place in the same competition. This prize paid for eighteen months’ study and travel in Europe. John Gates, the architecture head since 1947, continued in a dual role, helping to alleviate the housing shortage at Clemson and working to secure accreditation by the NAB. He had success with the former but not the latter.
In the case of accreditation, Gates wrote Trustee Thornhill, identifying two major impediments: faculty and space. Among the new young architecture faculty that Clemson had begun to hire were Antonio Paul de Albuquerque, a Brazilian, and Robert St. Hubert, a Frenchman. Both had been educated in a more traditional beaux-arts style, which was no longer generally taught nor practiced. St. Hubert immersed himself in campus work and spent time planning the murals for the large reading room in the college library. One of the three can still be seen today with difficulty because of the manner of insertion of a mezzanine floor in the southern section of Sikes Hall. A second fresco, done by St. Hubert and his wife, Martha Van Deriken, on the third floor of Riggs, was unveiled by Rudolph E. Lee and the artists in late spring of 1949. It was dedicated to the memory of fourteen Clemson architecture graduates and students killed in military service in World War II. Accreditation obviously depended on acquiring much more space for architecture and perhaps on the program becoming a separate school within the college. Also it might have depended on faculty whose designs were not so eclectic as the previous generation’s designs had been.

But no new building had even made it to the planning stage, and salaries across the whole college remained quite low, especially in numerically (by student majors) small fields such as architecture and the liberal arts. Gates thought he saw a glimmer of hope for a building when a Permanent Improvements Bill was introduced in the general assembly. But by June 1954, the Board of Trustees became frustrated because it had received a large number of letters from architects in South Carolina, many who were Clemson graduates, complaining about the issues of building, school, and accreditation. Gates and, less frequently, Poole received the blame. The matter reached a climax at the board meeting of June 18, 1954, when it was agreed that Gates be asked to resign and Poole was directed to inform Gates. The vote later that day in the board’s open meeting provided “that the resignation of Professor J. H. Gates, Head of the Architectural Department, be accepted.” Poole did nothing about the directive for nineteen days. Finally on July 7, Cooper ordered him to carry out the board’s wishes. He did, but board frustration with Poole had increased.

Earle Retires

Probably no other event in the School of Engineering was so momentous as the decision of Samuel B. Earle to retire from the college and the deanship of engineering. Earle had come to Clemson in 1902, and upon Riggs’s succession to Clemson’s presidency in 1910, he became director of engineering. No trustee, nor almost anyone else at Clemson, could remember the college’s engineering program without Earle. The branches he inherited were mechanical, civil, and electrical. In the forty years as director and dean, Earle had added architecture, established as a
department in 1933, and then in 1917, chemical engineering, which lasted until 1924. It was revived in 1933 to help develop the emerging pulp industry in South Carolina and has played a major role in the region’s developments since that time. Ceramic engineering was a post-World War II addition. Although the trustees knew of Earle’s imminent retirement, they read his dignified resignation letter with great regret and respect. The letter included memories such as

…I had begun to be interested in the work here, and when Dr. Riggs went in as President in 1910, and I was put in charge of the School of Engineering, I made up my mind that I would devote the rest of my life to the work here at Clemson if the Board wanted me….I can always be ready to help in any way I can toward the further development of any of the work at Clemson.27

The dedication of Earle Hall in 1959, the new home of the emerging chemical engineering program. It was built with funds procured from the Olin Foundation and named in honor of Samuel Broadus Earle, recently retired engineering dean and former acting college president. Clemson University Photographs, CUL.SC.

James H. Sams Jr., who graduated from Clemson in 1924 and then served on the faculty prior to World War II, was appointed acting dean. When the United States declared war in 1941, Sams joined the Army Air Corps, served in the European theater, and received several medals and commendations before he left military service in March 1949 with the rank of colonel. Sams resumed his post at Clemson and served as vice-dean when Earle resigned. He became dean of the school in 1951 and was aggressive and innovative in strengthening relations between Clemson’s students and faculty with industrial leaders, which led to a better
James Hagood Sams (1903–1970), the man who inherited the leadership of the School of Engineering from the longtime dean, Samuel Broadus Earle. Sams, Clemson 1924, joined the faculty in 1927, teaching until service with the Army Air Corps in World War II interrupted in 1941. He returned to Clemson a colonel in 1946, became acting dean in 1950, full dean in 1951, and resigned his post in 1960, becoming dean emeritus to take the post of executive secretary for the National Council of State Boards of Engineering Examiners. Clemson University Photographs, CUL.SC.

understanding of industries’ needs and probable future direction for Clemson. During Sams’s first year, McAdams Hall for agricultural engineering opened, moving the fast-growing program from the unheated barn in which it had been housed. The schools of Engineering and Agriculture jointly supervised agricultural engineering, one of the early interdisciplinary programs. Real space relief occurred with the opening of Earle Hall, a second gift of the Olin Foundation.29

Agriculture

McAdams Hall was also the first move the School of Agriculture made into the south section of campus, formerly devoted to fields, sheds, barns, and some of the “prefab housing.” That made the movement of those support buildings even farther south but opened up more meadowland that allowed for growth in animal husbandry. Clemson’s researchers and extension agents worked with the dairy farmers to increase the quality of the herds through scientific insemination, improved feed, and careful selection of cattle best suited for the different conditions of the region. “Big Ben” Goodale, long active in South Carolina’s dairy industry, along with Joseph P. LaMaster, demonstrated that, in combination with livestock and poultry, these industries had annual sales of $122 million a year, while the herds had a value of $93 million. The addition of new faculty such as Victor Hurst moved the programs forward rapidly.

Hurst had been an undergraduate at Rutgers, by then the state land-grant university of New Jersey and the only land-grant school built on a colonial collegiate foundation. After earning his PhD at the University of Missouri, he came to Clemson. The housing shortage found him rooming at the home and boarding house of Margaret Morrison, a much-beloved local public schoolteacher and principal. His scholarly research and experimentation focused on the improvement of dairy cattle.30 One of the newer dairy industries had begun in 1940 when the college, with the permission of the Blue Ridge line (a division of Southern Railway),
experimented with curing blue cheese in nearby Stumphouse Tunnel. When the college had the wartime training of army and Army Air Corps men, the milk was needed for the war effort. Production of the cheese gradually slowed and halted in 1944. After the war, some confusion arose between the rail corporation and heirs of the onetime owners. When settled, Clemson purchased the tract and reached full production of cheese in 1953. With the completion of the Agriculture Center, now Newman Hall, the entire process was moved to the new agricultural complex emerging on the southern side of the campus.

Forestry

A second major area of expansion in agriculture halted by the Depression and the war was in forestry, which the college discontinued in 1936. Koloman Lehotsky, an Austro-Hungarian-born PhD in forestry, joined the faculty to restart the teaching of forestry, heighten public service, and carry on research in moving the state forward in this new land-based economy. A two-year curriculum, transferable to an accredited program, began in 1947. In the meantime, Marlin Bruner of the Forestry Service supervised the developing forests growing rapidly on the “land-use” properties assigned to Clemson by the federal government, as the result of a proposal created by Prof. George Aull.

The state’s forestlands and their produce had increased since the turn of the century. At that time, the softwood yield, which accounted for slightly more than two-thirds of the annual output for South Carolina, amounted to about 20 million cubic feet, while hardwood production reached about 5.5 million in 1936. The yields increased to 210 million and 95 million cubic feet, respectively, by the 1945–1946 USDA Forest Service survey. The increase over the ten years from 1945 to 1955 was slight (about 3 percent) until the seedlings planted by the Civilian Conservation Corps in the 1930s would be ready for harvesting. As best as can be discerned from the same survey data, a spike occurred in the percent of forestland in federal and state ownership in the 1930s as a result of resettlement of farmers from marginal land. From the war’s end in 1945, that acreage remained a stable 10 percent through 1955. Besides the increase in total acreage, the major shift had been the decline in private forests (usually not managed for commercial purposes) as a part of private farms and the growth of commercial plantations by individuals (the greatest single share) and industry. The state’s total forest acreage increased from about 10.5 million acres to about 11.9 million acres (13.3 percent).

At the same time, the continued expansion of the textile industry and the emergence of the strong southern population belt (running from Atlanta, Georgia, through the South Carolina Upstate and deep into the North Carolina Piedmont), coupled with the continued movement of the three states’ midlands
toward a few urban areas (most notably the North Carolina Raleigh-Durham metropolis), added urgency for these states to take more aggressive stances toward the new forest industry. South Carolina chose not to move as vigorously as did the other two, and it was not until 1956 that the Board of Trustees and President Poole had the money needed to open a four-year forestry curriculum and a forestry department for the campus.

Agricultural Experiment Station

The S.C. Agricultural Experiment Station attracted much of Poole’s personal interest. He worked carefully with the general assembly on the improvement of the experiment stations around the state. In the 1945–1946 budget, the stations received nearly half of the state funds designated for Clemson. The college invested most of the money in research on new or improved crops, crop and animal diseases, and in pest control. That remained constant in percentage across the decade.

In crop improvement, the number of successes included the work of Rupert McGinty, the vice-director of the experiment station between 1936 and 1951. He developed the spineless okra, which began the rise of that vegetable from one that required very early picking because of the toughness of its spines to a digestible and more popular vegetable. W. C. Barnes, the superintendent of the Coast Station since 1937, a Clemson graduate and Cornell PhD, developed the Cherokee waxbean, listed as one of eight All-American new vegetables in 1948 in *New York Times*. Barnes assembled a team of industrious scientists at the Coast Station who worked together to adapt vegetables to flourish in South Atlantic climates. One of the most successful team members, William Epps, led in breeding mildew-resistant cucumbers, mosaic-resistant lettuce, winter cabbage, winter broccoli, and several excellent strains of tomatoes resistant to blossom end-rot. At the Edisto Station in Blackville, asparagus culture had led the region into a major export industry. These vegetable improvements, together with the abundant coastal seafood, played a significant role in the rise of South Carolina’s tourist industry.

Aside from vegetable crops, the Pee Dee Station in Florence focused much research on lice and pests on tobacco. In 1955, at the “home farm” at Clemson, Poole and the cotton specialists, with strong support from J. F. McLaurin of Florence and U.S. Senator Barnwell Rhett Maybank, brought the Southern Regional Cotton Ginning Laboratory to Clemson. This served as the catalyst for research in cotton staple in Alabama, Florida, Georgia, South Carolina, North Carolina, and eastern Tennessee.

The research unit also received funds from alumni to increase research. W. B. “Bill” Camp, a Gaffney native who had served in the federal government and was
a major California agriculturalist, gave the agricultural experiment unit a sizeable gift to work with large-volume irrigation. The early results increased corn yield 50 percent per acre. On the very same day as Camp’s gift, August 5, 1949, 150 specialists from Central America, South America, India, and the United States gathered at Clemson to exchange research information on growing, harvesting, and extracting valuable oil from sesame seeds.37

Cooperative Extension

The extension service, like the entire nation, had adjusted to issues as South Carolina returned to a semi-peace mode. Fourteen professional extension agents remained on military active duty in February 1946. While their Clemson positions were secure, that did not help David Watkins, extension director.38 With little help from the legislature and no aid or encouragement from Poole, the problem of covering the temporarily vacant positions worsened.39

Watkins and the extension service faced another drought that led to a food and grain shortage by the spring of 1946. It was made more difficult by returning veterans who wanted to continue raising cotton, ignoring the greater need for food supplies for humans and animals.40

But for the S.C. Cooperative Extension Service, new opportunities existed. The 4-H program, which focused on youth from nine to nineteen years of age, experienced a growth from 26,000 to 34,000 members between 1945 and 1947.41 The influx of about 30 percent more members was accommodated by the opening of 4-H Camp Bob Cooper, named for the president of the Clemson Board of Trustees and chairman of the Santee-Cooper power authority. Made possible by the state and surreptitiously urged by Cooper, the new camp took over buildings originally built for the massive Santee-Cooper hydroelectric construction project.42 Donations from federal surplus goods furnished the camp.

Thomas Morgan, for the extension service, and Hamilton Hill, assistant business manager for the college, worked together on the federal surplus goods project that benefited not only the youth of South Carolina at camps Bob Cooper and Long (the 4-H camp in the Aiken area), but also helped the experiment stations and the educational and research programs in sciences, textiles (acquiring advanced laboratory equipment and basic surplus), and engineering (receiving heavy duty equipment). Also, the college library added much-needed tables, chairs, desks, and bookcases, along with some basic reference works.43

Farm and Home Weeks

Not only were the Clemson camps, campus, and research centers enriched, but the S.C. Department of Wildlife Resources, in conjunction with Clem-
son and Dartmouth College naturalists, used surplus material to begin family summer camps in the relatively new state parks. And, although entering the “Indian summer” of its life, Farm and Home Week was revived. In 1948, 2,500 farmers and their families came to campus for the weeklong event. Besides the practical seminars on agricultural management and food preservation issues, the program included 4-H competitions and talent shows, along with displays of new, large, and “shiny” farm machines, equipment, and implements. Potential owners and children, both of the farm families and the communities that surrounded the college, could climb aboard some of the gigantic machines arrayed on Bowman Field.

Broader American and world politics also received attention at these events. For example, at Farmer’s Week on August 18, 1950, the main speaker for the affair was Assistant Secretary of State Dean Rusk, who discussed U.S. foreign policy, including the “police action” in Korea. Several seminars discussed the role the farmers could play, particularly in light of U.S. President Harry S. Truman’s 1948 request for all of the agricultural community to prepare for another military effort that might be greater than the “Berlin air-lift” to relieve the pressures of South Korea facing hostile actions from Communist North Korea.

Postwar readjustment also called on the extension service to improve the communities in which South Carolinians of all races lived. The Federal Housing Act of 1949 allocated some funds for the construction of better homes and other needed farm buildings for the agricultural communities and assigned the work to the extension service, but designated little money for the task. Similar legislation also encouraged the building of fishponds to increase the sources of protein. As part of Clemson’s program to improve dairy cattle, the extension service opened artificial insemination laboratories in five major dairy-producing counties. Clemson laboratory directors, educated at the college, supervised each laboratory. Much the same effort was expended on the improvement and enlargement of the state’s poultry flocks. And the U.S. Department of Defense called upon the Clemson Extension Service, through USDA, to aid in the resettlement of families dislocated by the construction of the Savannah River hydrogen power and bomb facilities constructed in the 1950s between the Savannah River basin and Aiken, Williston, and Barnwell.

But as farm families, faced with changing transportation and labor costs, continued moving from commercial agricultural production to town and community work, they frequently did not abandon the home place, but kept milk cows, chickens, and maintained fewer acres in fields, gardens and crops. The mission of the extension service went with them. The service as a model was attractive in rebuilding and developing communities and counties. The land-grant colleges, like Clemson College, sent out faculty to assist the people and hosted visitors from other countries, some emerging from centuries of foreign rule.
Radio and Television

In fact, general outreach, beyond the rural community, continued a long American tradition that harkened back far earlier than the famous Clemson trains that took staff to the countryside at the turn of the century. Clemson, quick to realize the possibilities of the radio in its early days, had operated one of the state’s first stations from a brick bungalow on campus, called by many local residents “Radio House.” Radio broadcasting would move around the campus. When the Clemson House was built in 1950, it contained a radio studio and broadcasting facility that stayed there until the early 1980s. The Clemson station broadcast regular early morning weather reports, general and local news, and programming usually focused on home, farm, and domestic concerns. Toward the end of the day, agricultural commodity market reports, stock market summaries, and occasionally talk shows and prerecorded music led to the station’s fairly early sign-off each evening.52

President Sikes used the radio effectively before Poole became president. Thus, it is no wonder that with the advent of television as a public medium (although not yet widespread), Poole pressed Clemson administration, faculty, staff, and trustees to create a television filming and transmitting center on the campus. It was hard to generate a lot of enthusiasm, but in this he was determined. He assembled short-lived committees on several occasions. The technical knowledge of most of the committee members and the steep costs of building before broadcasting could begin represented major hurdles. However, with the prospect of the new agricultural center on the south campus, Poole insisted that television studios and workspaces be included, along with photography laboratories and storage for printed materials of an educational nature and quality.

With that settled with the trustees and with their advice on its membership, Poole charged a staff and faculty committee to develop a television planning document. The large report, which appeared in draft circulation in early 1952, called for locating a 400-foot tower on Six Mile Mountain, a prominent landscape feature ten miles north of Clemson and ten miles west of Easley. This would make the entire structure (including the mountain) about 1,000 feet above local grade and 1,700 feet above sea level. The proposed ultra-high-frequency transmitter radiating at 1 million watts would broadcast in top-grade television service at a radius of forty-three miles and the next grade (B) for an additional sixteen miles. In sheer distance, the proposed top service would exceed the power of WBTV in Charlotte, North Carolina, and WSB-TV in Atlanta, Georgia, the only stations then operating in the area. Three much smaller stations were contemplated in Anderson and in Greenville. The cost of the equipment for it all ran an initial $220,000, and equipment for remote filming, including such events as sports,
church services, concerts, and the like, an additional $67,000. Annual operating costs amounted to another $60,000, while the plan called for each program sponsor to bear filming costs. Leading the committee was John W. Gillespie, a veteran who had received a BS degree in chemistry from Clemson in 1948. After graduation and time in Korea, he returned to study for a chemistry master’s degree before joining the faculty.53

With only the Six Mile transmission radius of forty-three miles, service included all the communities from Hendersonville, North Carolina, to Royston, Georgia, and in South Carolina, Honea Path to Greer, including Anderson and Greenville. A booster transmitter at Paris Mountain, just north of Greenville, would somewhat enlarge Grade A’s population market, but the B level added the desirable Spartanburg market.

The market also proved favorable to the venture. The previous year (excluding the fifteen network-owned and -operated stations nationwide), income to the major stations increased 33 percent in one year, while total expenses grew by 28 percent. In fact, the average profit for television stations with the same population market and similar competition had, from 1951 to 1952, increased 70 percent, and none reported a loss in 1952. The proposed market reached 22 percent of the state’s population with a buying income of 24.5 percent. Advertising revenue potential was not as great as about half the compared areas because of the less-concentrated nature of the population. All in all, the faculty and staff report on a television station at Clemson was a most fair and positive one.54

Delivered to the trustees at their spring 1953 meeting, the report was sent to a committee of trustees, alumni, and staff chaired by William Augustus Barnette. A Clemson graduate of 1910 and later a veterinary science faculty member, he came from Greenwood. Other members were Ben Leppard, L. W. Riley, J. R. Mattison, and Walter T. Cox, who served as director of public relations after several years’ experience in the Athletic Department. At the second meeting in June, Barnette’s committee recommended that Clemson build a large television studio along with a visual aids studio. It was added to the new agriculture complex. The committee urged that the trustees and key administrators continue to study the remainder of the report.55 By the October meeting, Poole advised that the college immediately purchase equipment to produce television programming, including mobile filming and transmitting equipment, and that programs be distributed to regional stations for their use. The cost amounted to $70,000 for the equipment, plus the annual costs for salaries and supplies. Acquiring a license, a channel, and the transmitting capabilities had to await state funding of the $200,000 (2009 equivalent $1,586,092). The trustees approved it all, providing the state helped to finance it, but the state government did not move on doing so until 1961.56 By that time, regional competition and costs had increased considerably.
Arts and Sciences

The School of General Science was renamed Arts and Sciences in 1946, and the deans had begun filling the faculty openings, caused by the war, in physics (one), history (two), and mathematics (one). Some faculty members in military service had returned. H. Morris Cox returned from service in Japan to the English Department and began working on his PhD degree at the University of Pennsylvania, which he completed in 1958. Marion Kinard, dean of the School of Arts and Sciences, named Cox head of the English Department.

Historian E. M. Lander, who had served in India, remembered on his return that after arriving back in America and some brief “mustering out,” the returning GIs boarded trains in various directions. Those who got off the train in Raleigh to split up for their local train journeys home decided to share a bottle or two of beer to honor their surviving the war. So they entered a local beer hall. The bartender quickly told them that only white people could be served in the saloon. Lander and his travelling companions in their service uniforms forewent the beer, turned, picked up their duffel bags, left the bar, shook hands, and separated forever. Several of the soldiers were African Americans.57

Still a separate school, Chemistry and Geology had four faculty positions open, along with positions open for four student laboratory assistants. Among those who returned to the School of Chemistry and Geology was Howard L. Hunter. He had received his PhD degree from Cornell in 1928 and immediately joined the Clemson faculty. When World War II began, Hunter joined the U.S. Army and was named chief administrator of the Division of Chemical Warfare Service Development Laboratory of MIT in Boston. He returned to Clemson in 1945 as a lieutenant colonel and professor of chemistry. Hunter led the faculty study team that wrote the projected needs analysis for the new chemistry building. Then, in 1947, upon the retirement of F. H. H. Calhoun, “Footsie,” as Hunter was

Howard Louis “Footsie” Hunter (1904–1975) joined the Clemson faculty in 1928, teaching chemistry until he entered the U.S. Army in 1941. Hunter returned to Clemson a lieutenant colonel in 1945, and in 1947 he became dean of the School of Chemistry and Geology. He held this position until he assumed the position of dean of the School of Arts and Sciences in 1955. Hunter retired as dean emeritus in 1969. Clemson University Photographs, CUL.SC.
called for his Tom Clemson-sized feet, received the appointment as dean of the School of Chemistry and Geology. Further, a separate list of anticipated retirements of faculty who were, or soon would be, over seventy years of age (of whom six had each taught at Clemson for more than forty of the college’s fifty-four years) forecast ten retirements within two years. These represented nearly one-third of the Arts and Sciences faculty and 60 percent of all the anticipated college faculty retirements.

Poole received board permission to hire faculty to replace this large number along with some additional faculty to replace the retirees. Faculty such as Lander taught across various fields and recalled “burning the midnight oil” to prepare for the additional assignments. Another returning faculty member in social sciences, Frank Burtner, a sociologist, had completed undergraduate and some graduate work at the universities of Texas and North Carolina. Having continued his study and then served in the Army Medical Corps during the war, Burtner had made contacts invaluable to Clemson students planning to go on to medical, dental, or pharmacy schools. Both Burtner and Lander earned PhD degrees during the decade using the GI Bill. Each had a significant impact on their students’ lives, Lander as an outstanding lecturer and highly regarded, well-published author, and Burtner as an advisor to academic and leadership societies and to pre-professional students.

Others joining the faculty of the Social Sciences Department included Waldron Bolen, “Uncle Remus,” who had served in the European theater. While Lander married Sarah Shirley, a librarian who had lived at the old wooden Clemson Hotel as had “Whitey” (E. M. Lander’s nickname, which derived from his hair color), Bolen came to Clemson with his young wife, Eleanor, and his PhD degree in German history from Duke University. As historian Alester G. Holmes, nearing retirement, finished lecturing to a class of cadets one day, Bolen remembered walking in a hall while classes changed, ahead of two of Holmes’s young cadets. One quipped to the other, “Well, ‘Old Misery’ [Holmes’s nickname] has just started on the Civil War for the third time this semester.” His comrade-in-arms chuckled, “Yep, but I think the South is gonna win this time!” Bolen had served in the army in Europe, which, added to his European history degree, led him to contemplate the “tragedy” of the students’ verbal exchange. Another newcomer, Robert Lambert, with his field in American colonial history, and his wife, Edythe, lived in the “prefabs” near the Bolens. The Lamberts left Clemson, then returned, settling for their careers.

Another of the large departments in Arts and Sciences was English. It offered classes in grammar, literature, modern language, speech, and music. Francis Marion Kinard, dean of the School of Arts and Sciences (then General Science) in 1943, continued in that capacity until August 1955. Educated at Wofford College, with his MA degree from UNC in 1929, he understood the importance of
faculty receiving doctoral degrees for advanced teaching and research and to raise the reputation of Clemson. He slowly produced such a faculty.

Mark Bradley served as the English Department head until his retirement on June 30, 1950. H. Morris Cox replaced Bradley as head. Because of his rich educational background, Cox added studies in linguistics and etymology to the curriculum in the late 1950s and 1960s. Cox’s wife, Irene, from Laurens County, was a relative of President Poole. Some of the faculty, such as Jordan Dean and Orestes “P. Doggie” Rhyne, taught both English and foreign languages.

Given the large teaching loads (200 students per faculty member each semester with five, or occasionally six, classes each term) and the determination to teach excellent communications through writing, in-depth reading, substantial amounts of parallel readings, and essay examinations, these teachers had little time for research, writing, and publication. Nonetheless, some did publish and built good reputations for themselves and for Clemson’s School of Arts and Sciences. The other big unit in Arts and Sciences, the Mathematics Department, with a faculty of sixteen, also continued as teachers and as leaders in the craft of teaching.

...Angels Unawares

The mind for this sort of teaching and research wanted neither the laboratory nor the pasture, but rather the stuff of the library. Although the library had been housed in fine space since 1926, it shared the building from time to time with agricultural extension, with a few classrooms for the faculty whose offices were in Tillman Hall, and with the Thomas Green Clemson collection of visual art and other artifacts. Thanks to Poole and his great interest in the role a good library should play in a student’s education, by war’s end the library subscribed to 600 periodicals, including newspapers and some popular magazines, but also an increasing number of scholarly journals, and with the addition of over 21,000 volumes across the war years, the holdings were becoming respectable. In addition, after more than a year of discussion and preparation at Clemson, the Rockefeller Foundation contributed $30,000 for new books and reference works. However, during that same period, the salaries for the professional staff were among the lowest in the South.

Poole kept the library needs of the “Clemson family” always before him. Many of the finest volumes in the collection were given to Clemson during his first fifteen presidential years. When he arrived in 1940, he had found a 49,000-volume collection, to which nearly 21,000 volumes had been added by 1945. In 1936, the Carnegie Foundation gave Clemson (and other colleges) good phonographs and 900 recordings of classical music. Having no other place for the use of these, Sikes had added the collection to the library reading room, where they were heavily used until 1951. At that time, the college moved the collection to the radio broadcasting...
station in the Clemson House.63 The biggest coup, however, began in 1938 when the highly regarded engineering laboratory of Bernard A. Behrend, a native Swiss engineering pioneer, came to the attention of Engineering Dean S. B. Earle. Several private eastern schools sought to purchase the laboratory, which contained a large number of unique or unusual instruments and equipment. Behrend’s widow, Margaret, had no plans to sell until she decided to move “down South” to Aiken and accidentally befriended Earle. On one of her drives south, she met two Clemson cadets, both extremely courteous, so she undertook to visit the campus. Driving onto it, she stopped a gentleman walking and asked for directions. The gentleman, Dean Earle, offered to give her a campus tour. Although the laboratory had been appraised at $100,000, after meeting Earle and visiting the campus as his guest, she offered it to Clemson for $25,000. Earle and then-President Sikes were excited, but Business Manager J. C. Littlejohn, mainly concerned about finding the money, opposed acquiring it. But both trustees Edgar Brown and R. M. Cooper urged acceptance of the offer. The trustees acted. Sikes and Earle told Mrs. Behrend that she had a deal. Brown negotiated a special bill through the legislature to pay for the laboratory, while Cooper urged his many legislative contacts to support the project. All were more than pleased. Then Mrs. Behrend paid to have everything crated and shipped. Later, she donated the $25,000 to Clemson to maintain the laboratory. But what did this mean to the library?

Mr. and Mrs. Behrend also collected rare and first edition books. And the Behrends had filed and saved their correspondence with scientists and others worldwide. During the next quarter of a century, Mrs. Behrend regularly gave much of this collection to the Clemson library. A second edition *De Revolutionibus Orbium Coelestium* (1564) by the Polish mathematician Nicholas Copernicus was among the important works in science. In it, under the guise of a mathematical exercise, Copernicus posited the sun, rather than the earth, was the center of the universe.

Bernard Arthur Behrend (1875–1932), inventor, electrical engineer, and avid collector of rare first-edition works of science. His wife, Margaret Plummer Chase Behrend (1895–1982), through her meeting with Dean Samuel Broadus Earle, gave a large portion of the couple’s rare book and manuscript collection to Clemson. Clemson University Photographs, CUL.SC.
His work called into question the accepted ancient Greek view of a geocentric, or earth-centered, universe. However, it did not challenge the concepts of finite universe or of motion. Those would await the publication of two other Behrend gifts, the Italian Galileo Galilei's *Dialogo 1632* (*Dialogue Concerning the Two Chief World Systems 1632*) and Isaac Newton's *Opticks* (1704), and then Michael Faraday's, Charles Darwin's, and Albert Einstein's studies, which are among the most important (and sometimes controversial) works of modern science.

Besides these, other rare (including first editions) and beautiful books given the library by Mrs. Behrend ranged from Edward Gibbon's multivolume history, John Ruskin's philosophical and architectural musings, John James Audubon's *Birds* (1840–1844) and *Quadrupeds* (1846–1853), a large collection of the works of William Makepeace Thackeray, and hundreds of other volumes. Mrs. Behrend's gift of books occupied one-half mile of shelving. The Behrend collection was marked by bookplates, with separate designs for each of the two owners. Greenville junior Phifer Byrd drew Mr. Behrend's bookplates, and Sam T. Earle, also a Greenville junior, created Mrs. Behrend's. Both were architecture students. Each received a monetary gift from Poole.

Friends of the Behrends, from Illinois, California, Massachusetts, and South Carolina, also gave books. In addition, Mrs. Behrend gave the library the correspondence of her husband and some of his friends, such as Thomas Huxley and Oliver Wendell Holmes. From her collection, she also added first editions by Jonathan Swift, Alfred Tennyson, Thomas Hardy, J. J. Audubon, E. White, and noted South Carolina author Julia Peterkin (along with personal letters between Peterkin and Mrs. Behrend), Thackeray's well-regarded aquatints, and one of a set of three bronze statuettes of Thackeray. Mr. Behrend's portrait, done by Mrs. Fernow, the wife of a faculty member, still hangs today in the University Special Collections.

The library also received 140 volumes of general reading from the shipboard library of the *S. S. Ben Robertson* when it was decommissioned on January 13, 1946. Librarian Cornelia Graham began a library of great authors’ works from the Carnegie Foundation and received a substantial grant from the General Education Fund (the Rockefeller Foundation) in 1947, by which time the collection had reached 86,000 volumes. At the same time, given the size of the student body and the academic fields taught, the college possessed only half the reference works and periodicals recommended by the American Library Association. But by 1955, the library’s holdings had reached 108,000 volumes, 977 periodical titles, and 745,000 government documents. This was one of Poole's major achievements.

Knowing that librarian Cornelia Graham intended to retire soon, Poole convened a faculty committee to search for her replacement. It included several young, research-oriented faculty as well as several senior faculty, including department heads and school deans. The committee looked through a number of
applications it had received, resulting from advertisements in major newspapers and library associations’ publications. In late 1953, the committee recommended John Wallace Gordon Gourlay, a Canadian. Gourlay had received his BA degree in English, history, and economics from Queen’s University, Ontario, in 1940, a bachelor of library science (BLS) from McGill University in 1941, and an MLS degree from the University of Michigan in 1942. During the height of World War II, he served as a combat pilot in both the Royal Canadian Air Force and the Royal Air Force. After the war, Gourlay had worked in the libraries of two major universities, Brown and Indiana, and in the collection at Louisiana Polytechnic Institute (Louisiana Tech at Ruston, Louisiana). He and his wife joined the Clemson academic staff in the summer of 1954.68

Research

Outside of the field of agriculture, which received funds from the federal government through USDA and in some states through privilege fees (such as the fertilizer tag sales in South Carolina), most money for research came from corporations for developing specific solutions to problems. A few colleges and universities (large private schools in the main), and a very few public universi-
ties, had created separate research foundations or corporations designed to receive gifts, grants, and copyright or patent revenues to hold, invest, and use to fund worthy faculty projects. The land-grant schools had made a number of efforts before World War I to push engineering research and dissemination of it into the federal budget, but to no avail.

In the past, Clemson had been able to accumulate money from the fertilizer tag sales revenue that could be used for one-time expenses, particularly for buildings such as the old textile building and additional barracks. The individual agricultural experiment stations sold excess produce and used the revenue to improve stock, update equipment, and add to supplies. However, during the gubernatorial administration of J. Strom Thurmond (1947–1951), the state required that all public money not expended by the end of the fiscal year be returned to the state treasury. The oversight authority passed to the South Carolina Budget and Control Board, established in 1948 (Act 621) to centralize fiscal activity. This, in effect, caused all public research institutions to turn to private sources for research.69

The first major support for Clemson’s nonagricultural research program was in the form of a bequest from Claude W. Kress, who left Clemson one-sixtieth of his residual estate, most of it invested in S. H. Kress Company stock. The trustees accepted (happily) the gift in stock and a small amount of cash. The value totaled about $560,000; the cash was invested in U.S. bonds. Throughout the early years, unexpended income was carefully placed in the bonds, but, because the donor had placed no restrictions on its use, the trustees spent time debating what to do with it. Urged by Poole, they eventually decided to use it to underwrite research. Poole then appointed a committee of faculty active in research and some deans and department heads to recommend rules for faculty application for research funds. The committee’s work took time, and Poole then presented its recommendations to the trustees.

The trustees then adopted the rules for use of the Kress fund revenue. Six principles guided its use. Of them, four provided certain limits: primarily, the revenue was to be used for scientific projects, except for projects eligible for USDA funds; second, funds could be used to design and construct specific research equipment; third, research should be favored that had economic importance; and fourth, publication of results of the funded projects could be supported financially. The two loopholes included the permission to use income to bring to campus “outstanding personalities to enhance the cultural aspect of students and to fund community life,” and to fund “miscellaneous worthwhile projects not covered by the above items.” Clearly, research in the liberal arts was not encouraged. In a long paragraph urging scientific experimentation, a sentence stated, “Projects involving surveys and those consisting of ‘library research’ will be considered, but a specially critical analysis of proposals for such projects will be made before support is granted.”70
Other bequests and memorial gifts given to support research added to this fund. Also, a large number of industries, recognizing the rapid strengthening of research capabilities of state universities, particularly those that emphasized engineering, began funding research at those institutions and a few selected private schools. Schools that moved to advance their research agenda included Clemson neighbors Georgia Tech and Duke. Georgia Tech had a strong advantage, a well-established and state-funded engineering experiment station that attracted new industries to Atlanta. Duke, on the other hand, a private institution with Methodist connections, involved itself in tobacco research funded by the Duke family, whose tobacco-derived wealth had essentially bought, renamed, and rebuilt Trinity College as Duke University in Durham, North Carolina. During 1953–1954, Textiles was the major departmental recipient at Clemson of nonagricultural federal and private research grants, receiving $95,000 in private funds, while Chemistry received $5,500, Arts and Sciences, $6,750, Engineering $22,000, and Agriculture $14,000. Roger Milliken, a major textile entrepreneur, worked eagerly for Clemson to develop a research center for textiles and gave stock worth $30,000 to begin the planning.

Graduate Work

But there the research stalled, in part because of the college’s lack of a strong graduate program. While some graduate work had been done in agriculture and in textiles with success, most such work was at the master’s level in education. Initially, it focused on vocational (agricultural and industrial) education, although as early as May 5, 1945, a faculty committee led by F. H. H. Calhoun had recommended that master’s programs be established in agricultural economics, agricultural engineering, animal husbandry, plant physiology, entomology, and horticulture, all in the School of Agriculture. The committee also urged the creation of master’s programs in textiles (in which Clemson had given some degrees earlier), chemistry, and in all fields of engineering, education, and architecture.

After considering the committee’s report, Poole recommended to the trustees that graduate work should begin in chemistry and in all education fields except elementary education, but he mentioned nothing about Clemson’s two original “mission” fields, agriculture and engineering. His overlooking of agriculture, at a time when other southern land-grant schools were moving into such work, led those schools to attempt to recruit some of Clemson’s better-known younger faculty. Particularly targeted was the program in agricultural economics and its kin field of rural sociology, both of which Poole had expressed “animus” toward shortly after accepting the presidency in 1940. The prospect of several faculty losses caused him to reconsider and recommend one year later that a master’s
degree be offered in agricultural economics. The trustees approved, and in the fall of 1946, six graduate students enrolled.74

One year later, the USDA proposed the opening of graduate programs at all of the 1862 land-grant colleges because they received Hatch Act funds. Approved at the cabinet level in 1948, and in states with a combined land-grant school and a liberal arts state school, the 1862 land-grant institutions had a strong outside mandate to begin graduate education.75

Thereafter, the master’s program at Clemson slowly took root in engineering and in the sciences.76 By 1948, W. H. Washington, dean of education, proposed the master’s degree for that school’s advanced work in six specific fields, most in forms of vocational education, but also a few in more traditional fields.77 Shortly thereafter, Clemson received admission to the Conference of Deans of Southern Graduate Schools, and the college placed its graduate organization under a Graduate Council composed of a graduate dean and committee of faculty that approved new master’s and proposed doctor of philosophy degrees. By 1951, H. J. Webb served as dean and chair of the Graduate Council. The council’s faculty members, all holders of the PhD degree, were G. M. Anderson (Agriculture), M. D. Farrar (Agriculture), O. B. Garrison (Agriculture), E. M. Lander Jr. and W. G. Miller (Arts and Sciences), and W. T. Rainey Jr. (Textiles, Chemistry). The council answered to Poole. But apparently, the trustees’ concern remained that Poole’s flat and slow management style would not change.78

To compound the trustees’ anxiety, Littlejohn, whose health since 1948 had been very poor, at which time he had asked his life insurance company to settle his policy because of his total disability,79 announced that he would retire effective September 30, 1954.80 Faced with all these changes and the managerial problem, the trustees, led by Daniel, contacted the New York management firm of Cresap, McCormick and Paget (CMP) requesting that it make a thorough study of Clemson Agricultural College. Much of the cost of the study would be borne by the trustees, with Daniel paying the major share.81

Notes
2. CUL.SC.CUA. S 30 ss ii f “Cooper”; CUL. SC.MSS 68 f 140; and MSS 91 b 4 f 408.
3. CUL.SC.MSS 68 f 146. Rockefeller comments are in RAC.GEB.SC 103 S 1.1 b 129 f 1179.
4. CUL.SC.CUA. S 6 f 2; S 15 f 232; and S 37 f “Textiles in the 1950s.”
5. Ibid., S 15 f 232.
6. Columbia State, clipping with no date in CUL.SC.CUA. S 37 f “Textiles in the 1950’s”; CUL. SC.CUA. S 30 v 6, 156; Anderson Independent, June 3, 1951; *Greenville News* July 1, 1951; SCHS 1231.06/25/36/10; CUL.SC.CUA. S 11 f 446; and S 30 v 6, 156.
9. CUL.SC.MSS 47 f 8.
The problem is the placement of a mezzanine floor and the creation of a viewing space that forces the looker into an unusual posture. For the missing Riggs Hall fresco, see Clemson Alumni News, Spring 1949, no pagination.

These data have been gathered by A. C. Land, history master's student, from a number of sources. The most useful has been the USDA's Economic Research Services, which has assembled acreage in forest-use land in approximately five-year intervals. Data from the U.S. Census Bureau, the University of Virginia's Geostat Center, and the Clemson University Division of Public Service Activities have been invaluable. Thanks to the many specialists in these centers who replied to Land's requests and my sometimes confusing pleas.

Rusk, who visited Clemson on a number of occasions, occasionally stopped at the grave of his ancestor, John Rusk, a stonemason whose remains rest in the historic churchyard of Old Stone Church (Presbyterian). The old church, built by John Rusk, still stands.
55. Ibid., S 30 v 6, 322.
56. Ibid., 342.
57. Lander, From Clemson College to India, 111–113.
58. CUL.SC.CUA S 37 “Agricultural Experiment 1945–1955.”
59. Lander and Lambert, with their spouses, kindly met with my wife and me to discuss their careers and their lives in Clemson during the decade. I appreciate their openness. Bolen and his wife died far too early, but we were very close friends. My wife’s and my memories are vivid. Data are from Record.
61. CUL.SC.CUA. S 15 f 159; and RAC.RF 2B S 2 ss 1.3 b406 f 4255. The correspondence of Mark Bradley, chair of the Clemson Library Committee, reinforces the fact that the facility could take no more books. A. Mann of the Rockefeller Foundation suggested that before a major grant could even be considered, readers’ space had to be increased. He recommended a large “stacks” building connected to the south wing of the then-library. One year later, Cornelia Graham hired a new professional assistant cataloger and moved long out-of-date U.S. government reports to the basement of the old Chemistry Building to make room for newer volumes. The Rockefeller Foundation then made the appropriation.
62. The Tiger, August 5, 1939.
63. CUL.SC.CUA. S 15 ff 157, 158, and 159; The Tiger, April 23, 1936; and Carnegie Foundation Archives, Columbia University, New York, NY.
64. CUL.SC.CUA. S 87 ss 1 b f 1; CUL.SC.MSS 240 b 12 f 12, b 14 f 41, and b 15; CUL. SC.CUA. S 15 f 158; The Tiger, January 16, 1947; Greenville News, March 8, 1959; and Augusta Chronicle, April 25, 1963.
66. CUL.SC.CUA. S 6 f 15 and S 15 f 160 and 161.
67. Ibid., S 7 f 737 and S 30 President’s Report to the Board of Trustees, 1948–1953, 19.
68. Ibid., S 28 f “Gourlay”; and The Tiger, February 11, 1954.
69. Edgar, South Carolina, 518.
70. CUL.SC.MSS 68 b 5 f.
71. CUL.SC.CUA. S 30 President’s Report to the Board of Trustees, 1953–1954, October 25, 1954, 3 and S 87 ss i b 48 f 1.
72. Ibid., S 7 f 27; and CUL.SC.MSS 255 b 2 f 6.
73. CUL.SC.CUA. S 30 President’s Report to the Board of Trustees, June 15, 1945, 7.
74. Ibid., S 7 f 27; and CUL.SC.MSS 255 6 2 f 64.
75. CUL.SC.CUA. S 7 ff 28 and 29.
76. CUL.SC.MSS 255 b 2 f 7; and CUL.SC.CUA. S 7 ff 28, 29, and 30.
77. CUL.SC.CUA. S 7 f 31.
78. Ibid., 7 f 33; and RAC.GEB.SC 103 S 1.1 b 129 f 1179.
79. CUL.SC.MSS 47 F 6.
80. CUL.SC.CUA. S 87 ss i b 52 f 15.
81. CUL.SC.MSS 90 S 7 b 11 f 16 and MSS 68 f 125.